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Abstract: In this paper, a compartmental model is proposed to study the effects
of contact tracing and quarantine strategies to reduce the spread of an epidemic.
The basic properties of the model are discussed and the equilibrium points are com-
puted. The basic reproduction number is calculated by using the next-generation
matrix approach. After calculating the basic reproduction number R0, the stability
analysis of the model is carried out. Sensitivity and bifurcation analyses are also
performed. Numerical simulations are performed to observe the effects of contact
tracing and quarantine strategies in reducing the spread of the epidemic. The re-
sults are displayed graphically to justify the analytical findings. The disease-free
equilibrium point is shown to be locally asymptotically stable when R0 < 1 and
unstable when R0 > 1 and the endemic equilibrium point is shown to be locally
asymptotically stable.
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1. Introduction
Mathematical modelling has become very important tool in epidemiology to

understand the dynamics of infectious diseases and predict the consequences of
introducing public health interventions to control the spread of diseases. Among all
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intervention policies, vaccination is considered as the most useful and cost-effective
strategy to control the spread of diseases. Vaccination is the administration of
antigenic material to stimulate the immune system of an individual to develop
adaptive immunity to a disease. Vaccination is useful in tackling many diseases
such as COVID-19, measles, rubella, tetanus, hepatitis B, influenza, etc. However,
vaccination does not necessarily imply life-long immunity for vaccinated persons [5,
21, 26]. There are some infectious diseases such as tetanus, diphtheria, hepatitis B,
influenza, etc. which all have temporary vaccine-induced immunity. For influenza,
the vaccine induces immunity that lasts only three to six months. Furthermore,
it is practically impossible to vaccinate all the susceptible individuals in a given
community, especially in those countries where vaccines are not easily available or
affordable. Hence, a framework that would predict the optimal vaccine coverage
level is a primary goal of health administrators and policy makers [2, 4, 6-9, 11,
12, 15, 20].

Besides vaccination [7, 9, 12, 15], there are many more preventive measures,
which have been used to reduce the spread of various infectious diseases. These
preventive measures include contact tracing, quarantine, prevention and treatment,
etc. Contact tracing [1, 11] followed by treatment or quarantine is a key control
measure in the battle against infectious diseases. In epidemiology, [20] contact
tracing means the identification and diagnosis of an infected person. Aparicio and
Hernandez [2] studied the effect of contact tracing in analyzing tuberculosis(TB).

Another preventive measure quarantine has been used to reduce the spread
of various infectious diseases for a long time. Quarantine is defined as the forced
isolation or stoppage of interaction with others. Quarantine has been used to reduce
the spread of many human diseases such as leprosy, plague, smallpox, typhus,
yellow fever, influenza, COVID-19, etc. It has also been used for animal diseases
such as psittacosis and rabies. Chinviriyasit et al. [8] studied the global stability
of a model for the transmission dynamics of infectious diseases with a new class
of quarantined individuals, who have been removed and isolated either voluntarily
or coercively from the infectious class. Hethcote et al. [14] studied the effects of
quarantine in six endemic models for infectious diseases. They have found threshold
equilibria and their stability for SIQS and SIQR epidemiological models with three
kinds of incidence. Hu et al. [16] analyzed two epidemic models with constant
immigration and quarantine. Zaman et al. [25] have discussed an SIR epidemic
model with three population classes: susceptible population, infected population,
and recovered population.

Goudiaby et al. [13] have investigated optimal control strategies of COVID-
19 and TB dynamics by incorporating five control measures. An SVIQR epidemic
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model for COVID-19 is studied by Verma et al. [22] who suggested that the disease
will eventually die out if the control measures are implemented above a specified
level for a sustained period. A mathematical analysis of the SVEIQR model for
COVID-19 is presented by Kunwar and Verma [18] in which the impact of different
degrees of control interventions is ascertained with the numerical simulation of
the model. Fei Wu et al. [24] have given a model that combines compartmental
and individual-based simulations, resulting in a delay differential equation model
with unique quarantine functions. Biala et al. [3] have investigated the efficacy
of contact tracing (CT) in reducing the spread of COVID-19. They developed a
compartmental model to assess its impact on mitigating the virus and describe
its effect on the reproduction number (R0). Pozo-Martin et al. [19] have shown
that contact tracing is a key non-pharmaceutical intervention in the fight against
COVID-19. Factors influencing its efficacy include contact proportion, tracing
speed, methods used, types of contacts traced, and setting. While observational
studies recognized its impact, limitations like insufficient implementation details
exist. Effective policies include manual and digital tracing with high coverage,
integration with other interventions, and timely actions. Izadi and Waezizadeh [17]
have proposed a non-linear mathematical model with eight compartments to study
the impact of vaccination on COVID-19. Waezizadeh et al. [26] have formulated
a novel mathematical model for COVID-19 with reinfection. They performed the
numerical simulation to analyze the solution.

In view of the above studies, a compartmental model is proposed to study the
impact of contact tracing and quarantine strategies in reducing the spread of an
epidemic. The saturation incidence rate of infection is also included in the model
because of its large population size.

2. Model Formulation

In the model, we have divided the total population into five compartments:
S1-susceptible with high infection risk (who are prone to getting highly infected
from infectives),S2-susceptible with low infection risk (who are prone to getting
less infected from infectives), I-infectives(who have the infection and are capable
of infecting others actively), Q-quarantined (who are infected and forced to stop
interaction with others and forced to live in isolation), and R-recovered (who are
immune to infection after treatment or self-protection). The detailed description
of model parameters is given in Table 1. We have also used saturation incidence
rate of infection to include the effect of force of infection in the model.

It is assumed that the high-risk susceptible population enters into the system
at the rate (1−ψ)A and the low-risk susceptible population enters into the system
at the rate ψA, where ψ is the immunity rate of low-risk population and A is the
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recruitment rate. β is the transmission coefficient of infection and p is the rate
of reduction in transmission of infection for low-risk susceptible population due
to its immunity towards infection. People with weakened immune systems might
not develop full immunity after infection and might be more likely to be infected
with the virus more than once. It is assumed that the recovered population again
enters into the susceptible population but with a low-risk of infection at the rate
θ. We assume that only a fraction of the total of newly infected contacts are
elucidated and that those individuals are quarantined [1]. This fraction moves
directly from the susceptible class to the quarantined class while rest of them move
to the infective class. We have also taken k as the rate at which newly infected
people are detected by the system through contact tracing. Population in the
infective compartment requiring special diagnosis and treatment are also isolated
and moved to the quarantined class Q(t) at the rate σ. We have assumed δ1
and δ2 respectively as the recovery rate constants of population in infective and
quarantined classes. The schematic representation of the model is given in Figure
1.

Keeping the above assumptions into consideration, the proposed model is de-
scribed by the following system of differential equations:

dS1

dt
= (1− ψ)A− βS1I

(1 + αI)
− µS1,

dS2

dt
= ψA− pβS2I

(1 + αI)
− µS2 + θR,

dI

dt
=

(1− k)β(S1 + pS2)I

(1 + αI)
− (µ+ δ1 + σ)I,

dQ

dt
=
kβ(S1 + pS2)I

(1 + αI)
− (µ+ δ2)Q+ σI,

dR

dt
= δ1I + δ2Q− µR− θR.



(1)

with following initial conditions:

S1(0) ≥ 0, S2(0) ≥ 0, I(0) > 0, Q(0) ≥ 0, R(0) ≥ 0 (2)

Also, we have N(t) = S1(t) + S2(t) + I(t) +Q(t) +R(t).
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Table 1: Description of Model Parameters

Parameter Description
A Recruitment rate
ψ Immunity rate of low-risk population
β Transmission coefficient of infection
p Rate of reduction in transmission of infection for low risk

susceptible population
k Rate of detection of newly infected

population through contact tracing
θ Rate of conversion of recovered population re-entering

into low-risk susceptible population
σ Rate of movement of infected population to the

quarantine population
δ1 Recovery rate of infected population
δ2 Recovery rate of quarantined population
α Saturation incidence rate of infection
µ Natural mortality rate

Figure 1: Compartmental Flow Diagram of the Proposed Model
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3. Model Analysis and Basic Properties
We analyse the proposed model by including the following basic properties:

3.1. Non-negativity of the Model
Non-negativity conditions are necessary to show that all the state variables re-

main non-negative for t ≥ 0 or every solution of the system remains positive for all
t ≥ 0.Thus, we have the following Lemma:

Lemma 1. Under the initial conditions given by (2), every solution (S1, S2, I, Q,R)
of the system (1) remains non-negative for all t ≥ 0.
Proof. From the system of eqns.(1) and (2), we have

dS1

dt

∣∣∣
S1=0

= (1− ψ)A ≥ 0, (3)

dS2

dt

∣∣∣
S2=0

= ψA+ θR ≥ 0, (4)

dI

dt

∣∣∣
I=0

= 0, (5)

dQ

dt

∣∣∣
Q=0

=
kβ(S1 + pS2)I

(1 + αI)
+ σI ≥ 0, (6)

dR

dt

∣∣∣
R=0

= δ1I + δ2Q ≥ 0. (7)

Thus, we conclude that every solution (S1, S2, I, Q,R) of the system (1) under the
initial conditions (2) is non-negative for all t ≥ 0.

3.2. Boundedness of the Model
Boundedness refers to the natural limits to the endless growth of an infected

population as a result of numerous constraints such as preventative practices devel-
oped by the population to protect themselves from contracting the disease under
consideration. We demonstrate that the solutions to the system (1) are bounded.
Thus, we prove the following Lemma:

Lemma 2. The set Ω= {(S1, S2, I, Q,R) : 0 < S1 + S2 + I + Q + R ≤ N} is
bounded for the system (1) with non-negative initial conditions (2) for all solutions
initiating in the positive octant.
Proof. Adding all the five equations of the system (1), and using the relation
N = S1 + S2 + I +Q+R, we have

dN

dt
= A− µN (8)
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Solving the above eqn.(8), we get

N =
A

µ
+ (N0 −

A

µ
)e−µt (9)

Now, if 0 ≤ N(0) ≤ A

µ
, then lim supt→∞N(t) ≤ A

µ
. Thus, we have

0 < N ≤ A

µ
(10)

Therefore, the set Ω={(S1, S2, I, Q,R) : 0 ≤ S1 +S2 + I +Q+R ≤ N} is bounded
for the system (1) and all the solutions of the model enter in the set Ω. Thus, our
proposed model is well-defined biologically and mathematically.

3.3. Basic Reproduction Number
The basic reproduction number R0 is a dimensionless quantity that is essential

in the analysis of any epidemiological model [10]. If the disease-free equilibrium of
the given system exists, it can be determined analytically. To determine the basic
reproduction number, we apply the next-generation matrix approach described by
Driesseche and Watmough. For the system (1), the disease-free equilibrium point

is computed as E0

(
(1−ψ)A

µ
, ψA
µ
, 0, 0, 0

)
. Now, we determine the basic reproduction

number R0 of the proposed model as follows:
We take only the infected compartments from the system (1) and thus, we have

the following infective class sub-system:

dI

dt
=

(1− k)β (S1 + pS2) I

(1 + αI)
− (µ+ δ1 + σ) I, (11)

dQ

dt
=
kβ (S1 + pS2) I

(1 + αI)
− (µ+ δ2)Q+ σI, (12)

dS1

dt
= (1− ψ)A− βS1I

(1 + αI)
− µS1, (13)

dS2

dt
= ψA− pβS2I

(1 + αI)
− µS2 + θR. (14)

The RHS of the above infected sub-system can be written as F − V , where

F =


(1− k)β (S1 + pS2)

I
1+αI

kβ (S1 + pS2)
I

1+αI

0
0

 and V =


(µ+ δ1 + σ) I

−σI + (µ+ δ2)Q
βS1I
1+aI

+ µS1 − (1− ψ)A
pβS2I
1+αI

+ µS2 − θR− ψA


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Now, we have

X =

[
dI

dt
,
dQ

dt
,
dS1

dt
,
dS2

dt

]
Let us define F =

[
∂(F)i
∂xj

]
and V =

[
∂(V)i
∂xj

]
; for i, j = 1, 2, 3 at the disease-free

equilibrium point E0. Thus, the values of F and V at the disease free equilibrium

point E0

(
(1−ψ)A

µ
, ψA
µ
, 0, 0, 0

)
are given by

F =

 (1− k)β
(1− ψ + pψ)A

µ
0

kβ
(1− ψ + pψ)A

µ
0

 and V =

[
(µ+ δ1 + σ) 0

−σ (µ+ δ2)

]

Again, by the next-generation matrix approach, the next-generation matrix of the
model is given by FV −1 and the basic reproduction number R0 is determined by
the spectral radius ρ of FV −1. Thus, we have

FV −1 =

 (1− k)β
(1− ψ + pψ)A

µ (µ+ δ1 + σ)
0

kβ
(1− ψ + pψ)A

µ (µ+ δ1 + σ)
0

 (15)

The eigenvalues of the matrix FV −1 are given by∣∣∣∣∣∣∣∣
(1− k)β

(1− ψ + pψ)A

µ (µ+ δ1 + σ)
− λ 0

kβ
(1− ψ + pψ)A

µ (µ+ δ1 + σ)
0− λ

∣∣∣∣∣∣∣∣ = 0 (16)

Solving eqn.(16), we get the two eigenvalues as λ = 0,
(1− k)βA(1− ψ + pψ)

µ (µ+ δ1 + σ)

The largest eigenvalue
(1− k)βA(1− ψ + pψ)

µ (µ+ δ1 + σ)
gives the spectral radius ρ of

FV −1. Hence, the basic reproduction number R0 is given by

R0 =
(1− k)βA(1− ψ + pψ)

µ (µ+ δ1 + σ)
(17)
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4. Equilibrium Analysis
The model described by system (1) has two equilibrium points: namely, disease-

free equilibrium (DFE) point E0 = ( (1−ψ)A
µ

, ψA
µ
, 0, 0, 0) and endemic equilibrium

(EE) point E∗ = (S∗
1 , S

∗
2 , I

∗, Q∗, R∗), which satisfy the equations:

(1− ψ)A− βS1I

(1 + αI)
− µS1 = 0, (18)

ψA− pβS2I

(1 + αI)
− µS2 + θR = 0, (19)

(1− k)β(S1 + pS2)I

(1 + αI)
− (µ+ δ1 + σ)I = 0, (20)

kβ(S1 + pS2)I

(1 + αI)
− (µ+ δ2)Q+ σI = 0, (21)

δ1I + δ2Q− µR− θR = 0. (22)

These equations on simplification give us the following values:

S∗
1 =

(1− ψA)

( βI∗

1+αI∗
+ µ)

, (23)

S∗
2 =

1

p

[
(µ+ δ1 + σ)(1 + αI∗)

β(1− k)
− (1− ψ)A

( βI∗

1+αI∗
+ µ)

]
, (24)

Q∗ =
I∗[k(µ+ δ1)]

(µ+ δ2)(1− k)
, (25)

R∗ =

[
δ1

µ+ θ
+

δ2[K(µ+ δ1) + σ]

(µ+ θ)(µ+ δ2)(1− k)

]
I∗. (26)

Here, the value of I∗ is given by the following quadratic equation

UI∗2 + V I∗ +W = 0 (27)

where

U = [δ1(1− k)(µ+ δ2) + δ2(k(µ+ δ1 + σ) + σ(1− k))](β + aµ)θpβ

V = (µ+ θ)(µ+ δ2)(β + aµ)[ψApβ(1− k)− (µ+ δ1 + σ)(µ+ pβ(1− k))]+

Aβ(1− k)(1− ψ)(µ+ θ)(µ+ δ2)[αµ+ pβ] + µβ(1− k)(αδ1(µ+ δ2) + δ2θσp)

W = µ2(µ+ δ1 + σ)(µ+ θ)(µ+ δ2)

[
R0 −

pβ(1− k)

µ

]
− µ(µ+ θ + σ)(µ+ δ2)
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A solution I∗ of eqn.(27) corresponds to the endemic equilibrium solution, and
it is easy to observe that the system has a unique positive endemic solution by
Descartes sign rule, if the following conditions hold:

(i)R0 > 1, (ii)
ψApβ(1− k)

(µ+ δ1 + σ)
> µ+ pβ(1− k), (iii) R0 <

pβ(1− k)

µ
.

5. Stability Analysis of Equilibrium Points
The Jacobian matrix of the system of eqns.(1) is given by

J(E) =


−βI
1+aI

− µ 0 −βS1

(1+aI)2
0 0

0 −pβI
(1+aI)

− µ −pβS2

(1+aI)2
0 θ

(1−k)βI
1+aI

(1−k)pβI
1+aI

(1−k)β(S1+pS2)
(1+aI)2

− c 0 0
kβI
1+aI

kpβI
1+aI

(1−k)β(S1+pS2)
(1+aI)2

+ σ −(µ+ δ2) 0

0 0 δ1 δ2 −(µ+ θ)

 (28)

where c = (µ+ δ1 + σ).

5.1. Local Stability of Disease Free Equilibrium(DFE) Point E0

To discuss the stability of the system at DFE point E0

(
(1−ψ)A

µ
, ψA
µ
, 0, 0, 0

)
, we

have the following theorem:

Theorem If R0 < 0, then the system at the disease-free equilibrium point E0 is
locally asymptotically stable and if R0 > 0, then it is unstable.

Proof. To discuss the local stability of the system at E0

(
(1−ψ)A

µ
, ψA
µ
, 0, 0, 0

)
, we

write the Jacobian matrix at E0 as follows:

J (E0) =


−µ 0 −β(1−ψ)A

µ
0 0

0 −µ −pβψA
µ

0 θ

0 0 (1−k)β[(1−ψ)A+pψA]
µ

− c 0 0

0 0 kβ[(1−ψ)A+pψA]
µ

+ σ − (µ+ δ2) 0

0 0 δ1 δ2 −(µ+ θ)

 (29)

The eigenvalues are determined by |J (E0)− λI| = 0 and are given as: λ1 = −µ,
λ2 = −µ, λ3 = − (µ+ δ1 + σ) [1−R0], λ4 = − (µ+ δ2), λ5 = −(µ+ θ).
From these,we see that the four eigenvalues λ1, λ2, λ4 and λ5 of the Jacobian matrix
at E0 are negative and the remaining one eigenvalue λ3 has negative real parts if
R0 < 1. Hence, the disease-free equilibrium point is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1.
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5.2. Local Stability of Endemic Equilibrium Point E∗

To discuss the local stability of the system at the endemic equilibrium point
E∗ (S∗

1 , S
∗
2 , I

∗, Q∗, R∗), we write the Jacobian matrix at E∗ as follows:

J(E∗) =



−βI∗
1+αI∗

− µ 0
−βS∗

1

(1+αI∗)2
0 0

0 −pβI∗
(1+αI∗)

− µ −pβS2

(1+αI∗)2
0 θ

(1−k)βI∗
1+αI∗

(1−k)pβI∗
1+αI∗

(1−k)β(S∗
1+pS

∗
2)

(1+αI2)2
− c 0 0

kβI∗

1+αI∗
kpβI∗

1+αI∗
(1−k)β(S∗

1+pS
∗
2)

(1+αI∗)2
+ σ − (µ+ δ2) 0

0 0 δ1 δ2 −(µ+ θ)


(30)

where c = (µ+ δ1 + σ). Equation (30) can also be put in the following form:

J (E∗) =


A11 0 A13 0 0
0 A22 A23 0 A25

A31 A32 A33 0 0
A41 A42 A43 A44 0
0 0 A53 A54 A55


where
A11 = −

(
βI∗

1+αI∗
+ µ

)
, A13 = −

(
βS∗

1

(1+αI∗)2

)
, A22 = −

(
pβI∗

(1+αI∗)
+ µ

)
,

A23 = −
(

pβS∗
2

(1+αI∗)2

)
, A25 = θ, A31 =

(1−k)βI∗
1+αI∗

, A32 =
(1−k)pβI∗
1+αI∗

,

A33 =
(1−k)β(S∗

1+S
∗
2p)

(1+αI∗)2
− c, A41 =

kβI∗

1+αI∗
, A42 =

kpβI∗

1+αI∗
, A43 =

(1−k)β(S∗
1+S

∗
2p)

(1+αI∗)2
+ σ,

A44 = − (µ+ δ2) , A53 = δ1, A54 = δ2, A55 = −(µ+ θ).
The characteristic equation of above matrix J (E∗) is given by

|J (E∗)− λI| =

∣∣∣∣∣∣∣∣∣∣
A11 − λ 0 A13 0 0

0 A22 − λ A23 0 A25

A31 A32 A33 − λ 0 0
A41 A42 A43 A44 − λ 0
0 0 A53 A54 A55 − λ

∣∣∣∣∣∣∣∣∣∣
= 0

or |J∗ − λI| = λ5 +H1λ
4 +H2λ

3 +H3λ
2 +H4λ+H5 = 0

where
H1 = −(A11 + A22 + A33 + A44 + A55),
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H2 = A11(A22+A44+A55)+A13(A11−A31)+A22(A33+A44+A55−A32)+A33(A44+
A55) + A44A55,
H3 = A11(−A55A44−A55A22−A55A33−A44A22−A44A33−A22A33)+A32(A25A53−
A11A23−A55A23−A44A23)+A55(A44A22+A44A33+A22A33−A13A31)−A13(A55A31+
A44A31) + A22A33A44 + A25A42A54,
H4 = A11(−A25A32A53 + A25A42A54 + A55A44A22 + A55A44A33 + A55A22A33 +
A22A33A44−A55A23A32−A44A23A32)+A25(A32A53A44+A33A42A54−A32A43A54)+
A55A44(A22A33 − A23A32 − A13A31)− A13A31(A22A55 + A22A44 + A55A44),
H5 = A11A25(−A32A53A44−A33A42A54−A32A43A54)+A11A55(A44A22A33−A44A23A32)
+A13(A25A54A32A41 − A25A54A31A42 − A31A22A55A44).
with the following conditions:

H1 > 0, H2 > 0, H3 > 0, H4 > 0, H5 > 0, H1H2H3 −H2
3 −H2

1H4 > 0 and,

(H1H4 −H5)
(
H1H2H3 −H2

3 −H2
1H4

)
−H5 (H1H2 −H3)

2 −
(
H1H

2
5

)
> 0

Using the Routh-Hurwitz criterion, all the eigenvalues of the Jacobian matrix have
negative real parts. Thus, the endemic equilibrium point is locally asymptotically
stable.

6. Sensitivity Analysis
The purpose of sensitivity analysis is to identify the sensitive parameters and

to estimate these parameters with sufficient care. For the purpose, first of all, we
define the sensitivity index of R0 w.r.t. a parameter c as follows:

SR0
c = c

R0

∂R0

∂c
, where R0 =

(1−k)βA(1−ψ+pψ)
µ(µ+δ1+σ)

.
The sensitivity indices show how the model behaves with small change in any

parameter value according to the above definition. The sensitivity indices of R0

for model parameters are computed and are given in Table 2.

Table 2: Sensitivity Indices of R0 for Model Parameters

Parameter Sensitivity Index
A +1
β +1
k −0.11111
p +0.00008
µ −1.11627
ψ −0.00002
δ1 −0.87209
σ −0.01162
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The sensitivity analysis of the model reveals that the contact rate β, and the
recruitment rate A have a high positive impact on the spread of the epidemic. The
parameters µ, ψ, δ1, σ have negative impact.A graphical representation of sensitivity
indices of R0 is shown in Figure 2.

Figure 2: Graph Showing Sensitivity Indices of R0

7. Bifurcation Analysis
The nature of the solution of a system of non-linear differential equations can

be effectively described by using bifurcation analysis. In bifurcation analysis, we
shall investigate the local analysis of disease-free equilibrium at R0 = 1 and find
the bifurcation direction. Bifurcation happens when a parameter change affects
the stability of the equilibrium point.
For the analysis,let us consider β = β∗ as a bifurcation parameter at R0 = 1,
therefore, we have

β∗ =
µ (µ+ δ1 + σ)

(1− k)(1− ψ + pψ)A

Using β∗ and disease-free equilibrium point E0 in the Jacobian matrix correspond-
ing to the system of non-linear differential equations, we have

J (β∗) =


−µ 0 (µ+δ1+σ)(1−ψ)

(1−k)(1−ψ+pψ) 0 0

0 −µ p(µ+δ1+σ)ψ
(1−k)(1−ψ+pψ) 0 θ

0 0 0 0 0

0 0 k(µ+δ1+σ)
(1−k) + σ − (µ+ δ2) 0

0 0 δ1 δ2 −(µ+ θ)


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This matrix has an eigenvalue zero at R0 = 1, which is a simple eigenvalue, and
all the remaining eigenvalues other than 0 are negative. Now, we apply the centre
manifold theory to analyze the system as follows:
The right eigenvector corresponding to the eigenvalue zero is given by[

(µ+δ1+σ)(1−ψ)
µ(1−k)(1−ψ+pψ) ,

1
µ

{
p(µ+δ1+σ)

µ(1−k)(1−ψ+pψ) +
θ

(µ+θ)

(
δ1 +

δ2k(µ+δ1+σ)
(1−k)(µ+δ2) +

σδ2
(µ+δ2)

)}
, 1,

1
(µ+δ2)

(
k(µ+δ1+σ)

(1−k) + σ
)
, 1
(µ+θ)

(
δ1 +

δ2k(µ+δ1+σ)
(1−k)(µ+δ2) +

σδ2
(µ+δ2)

)]T
The left eigenvector corresponding to the eigenvalue zero is [0, 0, 1, 0, 0].
Using center manifold theory, we find

a∗ =
2 (µ+ δ1 + σ) (1− ψ)β

µ(1− ψ + pψ)
− 2αβ(1− k)A(1− ψ + pψ)

µ
+

2βp(1− k)

µ{
p (µ+ δ1 + σ)

(1− k)(1− ψ + pψ)
+

θ

(µ+ θ)

(
δ1 +

δ2k (µ+ δ1 + σ)

(1− k) (µ+ δ2)
+

δ2σ

(µ+ δ2)

)}
and

b∗ =
(1− k)A(1− ψ + pψ)

µ
> 0

Figure 3: Graph Showing Backward Bifurcation at R0 = 1

Clearly, we can see that a∗ > 0 and b∗ > 0 and,therefore, a backward bifurcation
occurs at R0 = 1 in our model which can be seen in Figure 3. This implies that
the disease will exist in the population even if R0 < 1.
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8. Numerical Simulation

Here, we shall discuss the quantitative behaviour of infectious disease transmis-
sion dynamics. The conditions for local and global stability are determined. Now,
to see the dynamic behaviour of a system of eqns.(1) using MATLAB software, we
justify the analytical conclusions of the impact of infectious disease on the popu-
lation.
For a disease-free equilibrium point, we use the following set of parameters: A =
1000;α = 0.00003; p = 0.8; β = 0.000003; k = 0.1;µ = 0.02; δ1 = 0.15; δ2 =
0.01;σ = 0.002; θ = 0.4;ψ = 0.0001.
For the above set of parameters, we obtain the disease-free equilibrium point
E0 = (49993, 5, 0, 0, 0) and basic reproduction number R0 = 0.7849.
Similarly, for the endemic equilibrium point, we used the following set of param-
eter values: A = 1000;α = 0.00003; p = 0.8; β = 0.00001; k = 0.1;µ = 0.02; δ1 =
0.15; δ2 = 0.01;σ = 0.002; θ = 0.4;ψ = 0.0001.
For the above set of parameter values, we obtain the endemic equilibrium point
E∗ = (10160, 18535, 10253, 7215, 3835) and basic reproduction numberR0 = 2.6162.
Various time-series graphs are plotted by taking variations of different classes of
population in Figures (4)-(9).
Figure 4(a) depicts that for different initial values of high risk of susceptible pop-
ulation (S1), low risk of susceptible population (S2), and infected population (I),
the trajectories converge to disease-free equilibrium points. Hence, the disease-free
equilibrium point is globally asymptotically stable in space (S1 − S2 − I).

(a) Global Stability of Disease-free
equilibrium point in S1 − S2 − I space

(b) Global Stability of Disease-free
equilibrium point in I-Q-R space

Figure 4: Global Stability of DFE in Different Spaces
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(a) Global Stability of Endemic
equilibrium point in S1 − S2 − I space

(b) Global Stability of Endemic
equilibrium point in I-Q-R space

Figure 5: Global Stability of EE in Different Spaces

Figure 4(b) depicts that for different initial values of the infected population
(I), quarantined population (Q), and recovered population (R), the trajectories
converge to the disease-free equilibrium point. Hence, the disease-free equilibrium
points are globally asymptotically stable in space (I-Q-R).

Figure 5(a) depicts the variation of different initial values of the high-risk suscep-
tible population (S1), low-risk susceptible population (S2), and infected population
(I), where the trajectories converge to an endemic equilibrium point. Hence, the
endemic equilibrium point is globally asymptotically stable in space S1 − S2 − I.
Figure 5(b) shows the variation of different initial values of the infected population
(I), quarantined population (Q), and recovered population (R) where the trajec-
tories converge to an endemic equilibrium point. Hence, the endemic equilibrium
point is globally asymptotically stable in space (I-Q-R).
In Figure 6(a), a variation of the population in different compartments with time
for various parameter values is drawn. In this figure, the variation of population
in all the classes with time is shown. It is found that high-risk susceptible pop-
ulation (S1) first increases with time and after some time it decreases and then
reaches their respective equilibrium position. Low-risk susceptible population (S2)
increases with time and then reaches their respective equilibrium position.
From Figure 6(b), we observe that as we increase the value of β, the number of
infections increases slowly but above a certain value of β, we find a rapid increase
in the number of infections. It is inferred that number of infections highly depends
on the transmission rate of the infectious disease.

From Figure 7(a), we observe that as we increase the value of σ, the infective
population decreases and the number of infective populations is quarantined. In-
fective population rises i.e. more or more people are exposed to the disease and get



Effects of Contact Tracing and Quarantine Strategies ... 229

infected. In addition, we observe from the graph that if none of the quarantined
strategies are adopted in the system, the endemic equilibrium level of the infec-
tive population rises. The impact of the saturation constant of incidence rate on
the number of infections produced is shown in Figure 7(b). We observe that for
less value of the saturation constant, we get higher values of infections and as we
increase the value of the saturation constant, we get less number of infections.

(a) Variation of Total Population
with Time

(b) Variation of Infected
Population for Different Values

of β

Figure 6: Variation of the Total Population with Time and Variation of
the Infected Population with Different Values of β

(a) Variation of Infected
Population for Different Values

of σ

(b) Variation of Infected
Population for Different Values

of α

Figure 7: Variation of Infected Population for Different Values of σ and
α

In Figure 8(a), the impact of the saturation constant of incident rate on the
number of quarantined populations is shown. From this figure, we observe that for
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less value of saturation constant(α), we get higher values of quarantined population
and as we increase the value of saturation constant, we get less number of infections
and this shows that quarantined population decreases.
From Figure 8(b), we observe that if we increase the value of the transmission
coefficient (β) in the population, the number of quarantined populations increases
slowly, but above a certain value of transmission coefficient (β), we find a rapid
increase in the number of quarantined populations.

(a) Variation of Quarantine
Population for Different Values of α.

(b) Variation of Quarantine
Population for Different Values of β.

Figure 8: Variation of Quarantine Population for Different Values of α
and β

(a) Variation of Infected Population
for Different Values of σ and k.

(b) Variation of Quarantine
Population for Different Values of σ

and k.

Figure 9: Variation of Infected and Quarantined Population for Different
Values of σ and k

Figure 9(a) shows variation in infectious disease population with time for the
different rates at which they are detected(k) and the rate at which they are quar-
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antined (σ). It is observed from the figure that if control strategies such as contact
tracing and quarantine are adopted in the system, then the number of infective in-
dividuals can be reduced. Further, it is found that if the infected population is not
quarantined, the infective population rises i.e. more and more people are exposed
to the disease and get infections. In addition, we observe from the graph that if
none of the control strategies is adopted in the system, the endemic equilibrium
level of the infective population rises. Figure 9(b) shows variation in infectious
disease population with time for a different rate (k) at which they are detected and
the rate at which they are quarantined(σ). It is observed from the figure that if
control strategies (contact tracing and quarantine) are adopted in the system, then
the number of quarantined populations can be increased. In addition, we observe
from the graph that if none of the control strategies is adopted in the system, then
the quarantined population decreases.

9. Conclusion

In this paper, a compartmental model has been proposed and analysed to inves-
tigate the impact of contact tracing and quarantine on the spread of any emerging
or re-emerging epidemic by taking into account five compartments as stated earlier.
We have computed the basic reproduction number R0 for the model, which is a
measure of the ability of a disease to spread infection in the population, which is
found to be R0 = 2.6162. We have performed a sensitivity analysis of the model
to identify the significant parameters affecting the basic reproduction number. We
have observed that β, A, µ and δ1 are the significant parameters. We have also
performed the bifurcation analysis and shown the co-existence of a disease-free
equilibrium point with the endemic equilibrium point at R0 = 1. Numerical simu-
lations have been performed to observe the effects of contact tracing and quaran-
tine strategies in reducing the spread of the epidemic. The disease-free equilibrium
point is shown to be locally asymptotically stable when R0 < 1 and unstable when
R0 > 1. Time series graphs have been plotted to study the effect of various effec-
tive parameters on the system with respect to time. A numerical investigation of
the model shows that contact tracing and quarantine play a key role in controlling
the diseases. Our study shows that contact tracing and quarantine strategies are
effective intervention measures to reduce the disease burden on the population.

In the future, we can incorporate the fuzzy concept to understand the uncer-
tainty or ambiguity in recognising low-risk and high-risk susceptibles.
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